

© Copyright 2008, 2009, 2010 Follett Software Company • www.perfmon4j.org • Page 1

Perfmon4j User Guide

Performance Monitoring API for Java Enterprise Applications

Purpose

Perfmon4j has been successfully deployed in hundreds of production java systems over the last 5 years. It has proven
to be a highly successful tool to measure performance while production servers are under load.

We have found Perfmon4j typically enables us to diagnose performance related issues in hours instead of weeks. This
is accomplished by the ability to deploy Perfmon4j in a very low overhead dormant state. If/when performance issues
occur it is possible to activate monitoring on targeted portions of the application code to isolate any bottlenecks. The
overhead of this targeted monitoring is minimal allowing measurements to be obtained as the problems are occurring.
Since monitoring can be configured at runtime there is no need for inconvenience users with an application restart.

Java Versions

1.5 and 1.6

License

Perfmon4j is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License, version 3, as published by the Free Software Foundation. This program is distributed WITHOUT ANY
WARRANTY OF ANY KIND, WITHOUT AN IMPLIED WARRANTY OF MERCHANTIBILITY,OR FITNESS FOR A
PARTICULAR PURPOSE. You should have received a copy of the GNU Lesser General Public License, Version 3,
along with this program. If not, you can obtain the LGPL v.s at http://www.gnu.org/licenses/

Features

Interval Timers

Perfmon4j groups timing into configurable intervals. This allows you to not only evaluate the duration of operations, but
how those durations respond over time.

Perfmon4j takes snapshots of performance characteristics at specific
configurable intervals. For example you could configure a monitor
that would record web request/response time every minute
throughout the day.

For each interval the following attributes can be recorded:

• Operation duration (Max, Min, Average, Median, Standard
Deviation)

• Throughput (Operations started and completed during the
duration)

• Configurable thresholds (Percentage of operations exceeding a
specified duration)

• Max concurrent threads

• What percentage of my method execution time is in SQL?

Capturing this data at specified intervals allows you to analyze how your system responds over time and under load.

Perfmon4j User Guide

© Copyright 2008, 2009, 2010 Follett Software Company • www.perfmon4j.org • Page 2

For example:

• What is my peak load?

• What time of day is my system under peak load?

• When and how often throughout the day does my system not meet my response time criteria?

• Where are the bottlenecks in my system? (Based on max concurrent threads)

Timers can be specified through the several methods, many of which do not require source code modification. Timers
can be added through the following methods:

• Class/Method Timers can be inserted dynamically, via Java
Agent instrumentation, as classes are loaded. This method
allows you to monitor java applications or classes even without
source code access.

• Web Request Timers can be added through a Servlet filter or
an Apache Tomcat valve without source code modification.

• Annotation based Timers can be used to mark specific
methods for timing. The Java Agent will then build timers at
class load time.

• Inline Code Based Timers can be added via the Perfmon4j
API to arbitrary code segments.

Interval timer hirearchy

Perfmon4j bundles timers in a package like hierarchy. This provides the ability to choose to monitor performance/load
from an overview level or zoom in to detail.

For example, consider an application that has the following class structure:
 org.myapp.circ.CheckoutBean, org.myapp.circ.CheckIn Bean; org.myapp.cat.AddTitleBean

If timers where inserted in this code through Class/Method timers you could monitor performance at the package, class,
or method level. For instance a monitor name of “org.myapp.circ” would measure the total time spent in any methods
of the CheckoutBean and CheckInBean classes. A monitor on “org.myapp” would also include any methods on the
AddTitleBean .

When configuring monitors a pattern can be applied to the root monitor name to indicate which timers should be active
within a package. For example you could specify “org.myapp.circ” and include the pattern “/**” to specify monitors on
all descendents. This would result in output for both, CheckoutBean and CheckInBean as well as each individual method.

Thread Trace Sampling

Thread trace sampling provides a quick way to sample a process thread on a production system. This technique is
particularly successful at tracking down bottlenecks in high volume processes.

For example consider a keyword search engine that handles several thousand requests per minute. In this
environment you might notice during periods of peak load
throughout the day where average response time slows to
an unacceptable level. It would be very helpful to have a
detailed picture of where each of these process threads
spends the majority of their time. At the same time any
overhead of extensive monitoring during these peak loads
could result in further performance degradation.

With a thread trace sampler you can specify a random
sampling factor. This factor will limit the monitoring
overhead to only a small subset of the total load. The
thread trace will provide a detailed stack trace hierarchy
for the sampled process. This stack trace will provide details on the duration of each sub-process. This trace can
quickly identify bottlenecks and areas for optimization.

Perfmon4j User Guide

© Copyright 2008, 2009, 2010 Follett Software Company • www.perfmon4j.org • Page 3

Important

Perfmon4j uses the javassist project to insert
instrumentation via byte code modification. The
javassist.jar class distributed with perfmon4j must be
installed as an “endorsed” jar file.

Snap Shot Monitors

Snap shot monitors can be configured to take performance measurements at arbitrary intervals. Snapshot classes can
be configured to measure virtually any system counter/event. For example you could measure the total number of
bytes sent/received by a web container.

SQL/JDBC Monitoring (New in Perfmon4j 1.1.0)

Perfmon4j can instrument and insert monitors on the classes and methods associated with any JDBC driver. This
option must be selected at system startup via the “-eSQL” javaagent parameter (See JavaAgent Configuration for
Details). This is available for use in two powerful ways.

1. You can monitor the average duration and frequency of specific JDBC methods. For example to monitor the
frequency of calls to “Statement.executeQuery” you can create a monitor on “SQL.executeQuery .

2. When this feature is available all other monitors will contain information on the duration, in milliseconds, the
particular monitor spent in JDBC/SQL processing. This is particularly valuable on a request level as it will allow
you to determine the amount of time the request spent in Java vs. SQL. In the example below the output
indicates for each web request to an average of 524 milliseconds, of that time 79 milliseconds was spent in
JDBC/SQL requests.

Note: this example shows the data output to a text appender, this same data can also be written to a SQL table for
reporting/processing.

Appender (Output) architecture

Perfmon4j can output data to an application server log or SQL Database. It is also possible to write and deploy custom
appenders to extend this functionality.

Configuration

Configuration of perfmon4j is divided into a launch time and runtime sections.

Launch time Configuration

At launch time the perfmon4j java agent is installed and
configured. With this configuration you must decide which
classes, methods and annotations will be instrumented and

Perfmon4j User Guide

© Copyright 2008, 2009, 2010 Follett Software Company • www.perfmon4j.org • Page 4

available for monitoring. The instrumentation process is done through byte time engineering. Based on the load time
configuration timer code will be inserted but will not be active. While inactive the timer overhead is extremely minimal.

For a web application additional launch time configuration can be used to configure web request timings. This
configuration can be done via a Servlet filter or an Apache Tomcat Valve

JavaAgent Configuration

Perfmon4j is installed through the java agent command on the java command line. The format to add the java agent is:
 -javaagent:<path to perfmon4j.jar>/perfmon4j.jar=< configuration options>

The configuration options are specified with a comma separated list of options. The available options are:

Option Description Examples

-f This option specifies the location of the perfmonconfig.xml
configuration file. This file will be checked for modification every
60 seconds. If the file does not exist perfmon4j will start in an
inactive mode.

-f../config/perfmonconfig.xml

-e (repeatable)This option is used to indicate a package or class
name for instrumentation. Every method of any class within the
specified package hierarchy will have a timer inserted.

By default the extreme instrumentation will not create a monitor
for methods that match the bean setter/getter pattern. You can
enable instrumentation on getter and setters by prefixing the
class/package name with (+getter,+setter)

-eorg.jboss,-ecom.follett,

-e(+getter,+setter)com.follet.bean

-eSQL

(1.1.0+)
(Repeatable)Perfmon4j can instrument the classes associated
with a JDBC driver. This will create a monitor on each method
associated with the drive implementation in the format
SQL.<method name> . By default all classes loaded will be
examined to find the JDBC classes. You can limit which classes
are instrumented by specifying the following options:

JTDS - Instrument JTDS driver for Microsoft SQL Server.

MYSQL - Instrument the MYSQL driver

DERBY - Instrument the DERBY driver

POSTGRESQL - Instrument the postgresql driver.

ORACLE - Instrument the oracle driver

<package> - Only instrument classes in the specified package.

-eSQL

-eSQL(JTDS)

-eSQL(MYSQL)

-eSQL(POSTGRESQL)

-eSQL(ORACLE)

-eSQL(org.my.jdbc.impl)

-a (repeatable) This option is used to indicate a package or class
name for instrumentation. Any methods, containing a
DeclarePerfMonTimer annotation will, have a timer inserted

-aorg.jboss,-acom.follett

-i (repeatable) This option is used to override the –e and –a options.
Any class or packages within the specified package hierarchy will
be ignored.

-eorg.jboss, -iorg.jboss.system

This will instrument all classes within
org.jboss , except any classes in
org.jboss.system

-d Enables debug level logging in perfmon4j. Defaults to false. -dtrue

-v Enables verbose instrumentation output. This will output each
method that is instrumented and the name of the monitor created.

-vtrue

-b This is an experimental feature. When this option is true
perfmon4j will instrument ALL classes loaded by the bootstrap
loader. When this option is false (default) classes that are
loaded before the javaagent is loaded are NOT instrumented.

-btrue

-r Used with the -f option. Will override the duration in seconds
that the perfmonconfig.xml file will be checked for modification.

-fc:/perfmonconfig.xml, -r360

-g (Added in 1.0.2.GA) -gtrue

Perfmon4j User Guide

© Copyright 2008, 2009, 2010 Follett Software Company • www.perfmon4j.org • Page 5

This is a bit of an “out of place” feature for a performance
monitoring software, however we did find it fit a need for our
application and we wanted to make it available to others. The
use case is a desire to disable all calls to System.gc() , similar to
the Sun jvm parameter -XX:-DisableExplicitGC . However, unlike
that parameter we still want the ability to force a complete GC,
including a memory compaction, when the system is NOT under
extreme load. This parameter can be used to disable System.gc()
while still allowing calls to Runtime.getRuntime().gc() .

Examples:

The following will instrument any annotation within com.follett.fsc package along with every method on every class
within the catalina package. The runtime configuration will be loaded from c:\perfmon\config.xml .
-javaagent:../perfmon4j.jar=-fc:/perfmon/config.xml ,-acom.follett.fsc,-eorg.apache.catalina

The following will instrument all classes within com.follett EXCEPT the class com.follett.StringHelper
-javaagent:../perfmon4j.jar=-fc:/perfmon/config.xml ,-ecom.follett,-icom.follett.StringHelper

Servlet Filter Configuration

To add Servlet request monitoring to a web application you can
install the Perfmon4j org.perfmon4j.servlet.PerfMonFilter through
your web applications web.xml file. This filter will intercept all web
requests, based on the filter-mapping, with an interval timer. See
http://java.sun.com/products/servlet/Filters.html for details on how
to install a Servlet filter. The filter can be configured with the
following init parameters:

Parameter Description Default Value

BASE_FILTER_CATEGORY This is the root Perfmon4j category that all web request
will be grouped under. The Servlet url will be parsed to
build the category hierarchy. For example the web
request /circulation/handlecheckout?barcode=T1 will be
mapped to the WebRequest.circulation.handlecheckout

category .

WebRequest

ABORT_TIMER_ON_REDIRECT This option allows you to ignore redirects from the total
completion counts (total completions, max, min, average
duration, etc).

false

ABORT_TIMER_ON_IMAGE_RESPONSE This option allows you to ignore request that return an
image mime type from the total completion counts (total
completions, max, min, average duration, etc).

false

ABORT_TIMER_ON_URL_PATTERN This option allows you to provide a Java Regular
Expression pattern. Any request matching this pattern will
NOT be included in the total completion counts (total
completions, max, min, average duration, etc).

null

Valve Configuration

Perfmon4j can be configured to monitor all web requests via a Web Valve under Tomcat and JBossWeb installation.

Note: The Perfmon4j-tomcat-ConfigGuide documentation contains an example configuration of a web valve.

Runtime Configuration

The ability to enable/disable monitoring at run time is an important feature to enable diagnoses of performance issues
on production systems. Many types of bottlenecks can be difficult to reproduce in a test environment. Also when a
slow-down occurs in production you probably don’t have the luxury of shutting down the system to configure additional
monitors. In order to work in a production environment Perfmon4j allows monitoring to be configured “on the fly”.

Perfmon4j User Guide

© Copyright 2008, 2009, 2010 Follett Software Company • www.perfmon4j.org • Page 6

The java load time configuration, documented above, inserts timers in a low overhead, passive state. Typically the only
measurable performance penalty is an increase in java class load time. Those timers remain in this passive state until
you activate them, at runtime, with the perfmonconfig.xml file. (The name/location of this file is specified via the
javaagent command line).

● Root XML Element

The root xml element for the config file is the PerfMonConfig element. This element has one optional tag attribute
named enabled which can be set to true or false. The enable attribute provides a convenient method to toggle
Perfmon4j between an active and inactive state.

 All other elements must exist in the body of the root tag.

Tag Attributes

Name Values Description

enabled true OR false Default value is true. Provides a quick way to enable/disable perfmon4j.
When disabled perfmon4j will be set to an inactive state.

● Defining Appenders

Appenders are java classes that perform the task of polling monitors to retrieve and output event data at regular defined
intervals. The org.perfmon4j.TextAppender is the default class used to output logging events to the default log output
(Log4j, Java Logging or stdout). Custom appenders can be written to output the data to SQL tables or any other
sources by extending the org.perfmon4j.Appender class.

Appenders are defined by the appender tag inside the body of the PerfMonConfig tag.

Tag Attributes

Name Values Description

name Any String An arbitrary symbolic name that is use to map monitors to
appenders.

className A java class that extends the
org.perfmon4j.Appender class

interval A duration that indicates how
often monitors attached to this
appender should be polled.

Valid duration strings include a quantity and a unit of measure.
Acceptable units of measure include: seconds, minutes and hours.

The body of the appender tag can contain 1 or more attribute tags. Two optional attributes are the MedianCalculator
and the ThresholdCalculator .

Adding a MedianCalculator to an appender will result in the median duration of all timings to be calculated. The body of
the median calculator can optionally contain the following values factor and maxElements .

factor is used to specify a divisor to group durations for median calculation. The default factor is 100 which indicates
durations will be grouped into 1/10 of a second blocks.

maxElements is the maximum number of unique instances occurrences that will be used to calculate the median. Since
a true median calculation requires storing each occurrences of a value in a range, the median calculator uses an
algorithm to limit the total storage size. In cases of overflow the median calculator will return a median value that
indicates the lowest or highest possible value for the median. The default maxElements is 500.

A ThresholdCalculator can be used to measure a percentage of durations that exceed one or more threshold durations.
The body of the threshold attribute must contain a string with a comma separate list of durations.

Derived appenders can define additional attributes. When the appender is constructed the appropriate setter will be
invoked to pass the values to the appender instance.

Perfmon4j User Guide

© Copyright 2008, 2009, 2010 Follett Software Company • www.perfmon4j.org • Page 7

(Version 1.1.0+) When perfmon4j is enabled to include SQL/JDBC implementation a text appender can be optionally
configured to omit the SQL detail information associated with a monitor. The attribute to use this feature is: includeSQL .
By default SQL information will be included.

Example:
<Perfmon4JConfig enabled='true'>
 <appender name='high-res' className='org.perfmon4j .TextAppender' interval='1 minutes'>
 <!-- Do NOT include optional SQL durations -->
 <attribute name='includeSQL'>false</attribute>
 </appender>
 ...

● Defining Monitors

The monitor tag is used to attach interval timers to appenders. The monitor tag is used to specify a root interval timer
category. One or more appenders can be attached to an interval timer by adding an appender tag to the body of the
monitor

Tag Attributes

Name Values Description

name Any String A string that represents an interval timer or a root level package of
an interval timer.

The body of the tag should contain one or more appender body tags. These tags are used to associate this monitor
with an appender. The appender name attribute must match a defined appender (See: Defining Appenders).

Appender Mapping Tag Attributes

Name Values Description

name Any String Must match an appender defined with an appender tag in the root
element

pattern One of the hierarchy patterns
(See

The pattern is used to indicate a set of timers to attach to the
appender.

Hierarchy Pattern

 ‘.’ Parent only

‘./*’ Parent and all children

‘./**’ Parent and all descendents

‘/*’ All children

‘/**’ All descendents

Using hierarchy patterns, groups of timers can be attached to a single appender.

Perfmon4j User Guide

© Copyright 2008, 2009, 2010 Follett Software Company • www.perfmon4j.org • Page 8

● Defining Thread Trace Monitors

The threadTrace tag is used to configure associate a thread trace monitor with any interval monitor. These monitors are
typically defined in a ‘sampling’ mode where a detailed stack snap shot is captured based on a randomly selected
execution.

The threadTrace tag contains the following optional attributes:

• maxDepth – Indicates the maximum nesting depth of the monitor stack to capture. This is useful to reduce the
overall volume of data captured.

• minDurationToCapture – Indicates the minimum duration required to include a nested timer in the output.

• radomSamplingFactor – For detail monitoring of high throughput operations a sampling factor is used to reduce
the overhead associated with capturing detailed thread stack diagnostic information. The value indicates the
percentage of operations that will be monitored. For example a value of 100 indicates the thread trace detail
will be captured for 1 out of every 100 executions.

The thread trace configuration can also take an optional Triggers tag (1.0.2.GA+). This tag can define one or more
triggers that will be used to initiate a stack trace (if any one of the triggers match the stack trace will be displayed). The
following example has all of the available Triggers defined:

<Perfmon4JConfig enabled='true'>
 <appender name='myappender' className='org.perfmon 4j.TextAppender'
 interval='1 minutes'/>

 <threadTrace monitorName="WebRequest.examples.serv lets" maxDepth="10">
 <appender name='myappender'/>
 <Triggers>
 <HTTPRequestTrigger name="firstname" value="Dav e"/>

 <HTTPSessionTrigger attributeName='UserID' attri buteValue='200'/>
 <ThreadNameTrigger threadName='Processor-http:l ocalhost:8080'/>
 <ThreadPropertyTrigger name='jobID' value='300' />

 <HTTPCookieTrigger name="MyCookie" value="1"/>
 </Triggers>
 </threadTrace>
</Perfmon4JConfig>

● Defining Snap Shot Monitors

Documentation Coming Soon

For more information

See the Perfmon4j_ConfigSamples.pdf.
Rev 4 - Updated 10/5/2010

